No Free Lunch for Module Encapsulation

Ozlem O. Garibay!, Ivan I. Garibay', and Annie S. Wu!

University of Central Florida, School of Computer Science,
P.O. Box 162362, Orlando, FL 32816-2362, USA,
{igaribay,ozlem,aswu}@cs.ucf.edu,

WWW home page: http://ivan.research.ucf.edu

The concept of modularity has been extensively studied in the evolutionary
computation community. In contrast with a fitness-driven modularity approach,
we present an analysis where modules are simply strings of genomic symbols.
Our contribution is two fold: we provide a theorem on the impact of module
encapsulation on the search space and, we offer a static mathematical analysis
of the necessary conditions for the encapsulation to be beneficial.

Theorem 1. Strictly-encapsulating lower-order modules into a complete set
of higher-order modules does not change the search space size or structural bias.
Under certain assumptions, we prove that encapsulating and replacing all lower
level modules or primitives with the higher level counterparts does not affect
the size of the search space or bias the search. The proof for this theorem and
additional experimental support can be found elsewhere (Garibay, Garibay &
Wu 2004).

Arbitrarily encapsulating primitives into modules has two effects on the
search space: increase in the size of the search space and bias the search. The
size of the search space increases when a new module is encapsulated, since it
introduces a new element into the search space alphabet. Encapsulating “good”
modules bias the search towards the solution. We define “good” modules as mod-
ules that are present in the optimal solution and “bad” modules as modules that
are not. Hence, there is a trade-off between the gains and losses of introducing a
new module in terms of search space size and bias. In order for module encapsu-
lation to benefit the search, the encapsulated module should enable the search
algorithm to search a smaller space. The following closed form expression deter-
mines whether the creation of a module will be beneficial in terms of the size of
the new search space, C' > [%, where |X| is the length of the alphabet,
I is the length of the individual and C is a constant, C' = z(|w| — 1), where z
is the number of copies of the module defining string w in the optimal solution
and |w| is the length of this string. Using this expression, we can summarize the
effects of encapsulating a module as follows: encapsulating bad modules is always
detrimental; encapsulating good modules is advantageous only if the expression
above is satisfied.

References

Garibay, 1., Garibay, O. & Wu, A. (2004), Effects of module encapsulation in repeti-
tively modular genotypes on the search space, in ‘Proc. of GECCO’04’, To Appear.

